module Data.Complex
        (
        
          Complex((:+))
        , realPart
        , imagPart
        
        , mkPolar
        , cis
        , polar
        , magnitude
        , phase
        
        , conjugate
        )  where
import Data.Typeable
import Data.Data (Data)
import Foreign (Storable, castPtr, peek, poke, pokeElemOff, peekElemOff, sizeOf,
                alignment)
infix  6  :+
data Complex a
  = !a :+ !a    
                
        deriving (Eq, Show, Read, Data, Typeable)
realPart :: Complex a -> a
realPart (x :+ _) =  x
imagPart :: Complex a -> a
imagPart (_ :+ y) =  y
conjugate        :: Num a => Complex a -> Complex a
conjugate (x:+y) =  x :+ (y)
mkPolar          :: Floating a => a -> a -> Complex a
mkPolar r theta  =  r * cos theta :+ r * sin theta
cis              :: Floating a => a -> Complex a
cis theta        =  cos theta :+ sin theta
polar            :: (RealFloat a) => Complex a -> (a,a)
polar z          =  (magnitude z, phase z)
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) =  scaleFloat k
                     (sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y)))
                    where k  = max (exponent x) (exponent y)
                          mk =  k
                          sqr z = z * z
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0)   = 0            
phase (x:+y)     = atan2 y x
instance  (RealFloat a) => Num (Complex a)  where
    
    
    (x:+y) + (x':+y')   =  (x+x') :+ (y+y')
    (x:+y)  (x':+y')   =  (xx') :+ (yy')
    (x:+y) * (x':+y')   =  (x*x'y*y') :+ (x*y'+y*x')
    negate (x:+y)       =  negate x :+ negate y
    abs z               =  magnitude z :+ 0
    signum (0:+0)       =  0
    signum z@(x:+y)     =  x/r :+ y/r  where r = magnitude z
    fromInteger n       =  fromInteger n :+ 0
instance  (RealFloat a) => Fractional (Complex a)  where
    
    
    (x:+y) / (x':+y')   =  (x*x''+y*y'') / d :+ (y*x''x*y'') / d
                           where x'' = scaleFloat k x'
                                 y'' = scaleFloat k y'
                                 k   =  max (exponent x') (exponent y')
                                 d   = x'*x'' + y'*y''
    fromRational a      =  fromRational a :+ 0
instance  (RealFloat a) => Floating (Complex a) where
    
    
    pi             =  pi :+ 0
    exp (x:+y)     =  expx * cos y :+ expx * sin y
                      where expx = exp x
    log z          =  log (magnitude z) :+ phase z
    sqrt (0:+0)    =  0
    sqrt z@(x:+y)  =  u :+ (if y < 0 then v else v)
                      where (u,v) = if x < 0 then (v',u') else (u',v')
                            v'    = abs y / (u'*2)
                            u'    = sqrt ((magnitude z + abs x) / 2)
    sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
    cos (x:+y)     =  cos x * cosh y :+ ( sin x * sinh y)
    tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(sinx*sinhy))
                      where sinx  = sin x
                            cosx  = cos x
                            sinhy = sinh y
                            coshy = cosh y
    sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
    cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
    tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
                      where siny  = sin y
                            cosy  = cos y
                            sinhx = sinh x
                            coshx = cosh x
    asin z@(x:+y)  =  y':+(x')
                      where  (x':+y') = log (((y):+x) + sqrt (1  z*z))
    acos z         =  y'':+(x'')
                      where (x'':+y'') = log (z + ((y'):+x'))
                            (x':+y')   = sqrt (1  z*z)
    atan z@(x:+y)  =  y':+(x')
                      where (x':+y') = log (((1y):+x) / sqrt (1+z*z))
    asinh z        =  log (z + sqrt (1+z*z))
    acosh z        =  log (z + (z+1) * sqrt ((z1)/(z+1)))
    atanh z        =  0.5 * log ((1.0+z) / (1.0z))
instance Storable a => Storable (Complex a) where
    sizeOf a       = 2 * sizeOf (realPart a)
    alignment a    = alignment (realPart a)
    peek p           = do
                        q <- return $ castPtr p
                        r <- peek q
                        i <- peekElemOff q 1
                        return (r :+ i)
    poke p (r :+ i)  = do
                        q <-return $  (castPtr p)
                        poke q r
                        pokeElemOff q 1 i